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Neutron-proton pairing effect on the proton-rich nuclei moment of inertia
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Abstract. The neutron-proton (n-p) pairing effect on the nuclear moment of inertia is studied within the BCS
approximation in the isovector case. An analytical expression of the moment of inertia is established by means
of the cranking model. This expression generalizes the usual BCS one (i.e. when only the pairing between like-
particles is considered). The moment of inertia of N = Z even-even nuclei, for which experimental values are known,
i.e., such as 32 ≤ A ≤ 80, has been numerically evaluated, with and without inclusion of the n-p pairing effect. The
used single-particle and eigen-states are those of a deformed Woods-Saxon mean field. It turns out that the inclusion
of the n-p pairing improves the obtained values when compared to the usual BCS approximation, since the average
discrepancies with the experimental data are respectively 7% and 37%.

1 Introduction

Pairing correlations between nucleons are an important part
of the description of nuclear behavior. In heavy nuclei, such
correlations are usually neglected on the grounds that the two
Fremi levels are far apart. In nuclei with N � Z however,
the Fermi levels are close and neutron-proton (n-p) pairing
correlations can be expected to play a significant role in
nuclear structure. Effects associated with proton-proton (p-p)
and neutron-neutron (n-n) pairs are well understood, but n-p
pairing is a phenomenon which has only recently been opened
up for experimental investigation [1–6]. On the other hand,
the moment of inertia is a very important physical quantity
that plays an essential role in the description of the nuclear
rotation motion. Since it is sensitive to the deformation, its
measurement can provide indications about the nuclear shape
[7]. But, for “ordinary” nuclei, it is well known that there
exists a discrepancy of the order of 10–40% between the
theoretical BCS values and the experimental ones [7]. In order
to reduce this discrepancy several works have been performed
[8–14]. However, these works deal with “ordinary” nuclei and
do not include the n-p pairing correlations. The latter have
been taken into account by Gerceklioglu et al. [15,16] in the
calculation of the moment of inertia of several rare-earth and
actinide nuclei. They consider a special type of n-p pairing
interaction which is assumed to be a weak residual force.
However, their calculations deal with nuclei such that the
smallest value of the neutron excess (N-Z) is 26. But it is well
known that the n-p pairing correlations rapidly disappear when
(N-Z) increases [17,18]. Other studies deal with the moment
of inertia of nuclei such as N = Z [3,6] but they don’t give
explicitly the moment of inertia expression.

The purpose of the present work is to study the influence of
the n-p isovector pairing effect, within the BCS approximation
framework, on the moment of inertia of the proton-rich even-
even nuclei for which N = Z, and of whose experimental
values of the moment of inertia are known. In this aim an
analytical expression of the moment of inertia that includes
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the n-p pairing correlations is established in the next section.
The numerical results are presented and discussed in section 3.

2 Formalism

2.1 Hamiltonian

In the second quantization and isotopic spin formalism, the
Hamiltonian of a system constituted by N neutrons and Z
protons, when we restrict ourselves to the isovector case, is
given by

H =
∑
ν>0

t

ενt
(
a†νtaνt + a†ν̃taν̃t

)

−1
2

∑
tt′

Gtt′
∑
νµ>0

(
a†νta

†
ν̃t′aµ̃t′aµt + a†νta

†
ν̃t′aµ̃taµt′

)
(1)

where the t subscript corresponds to the isotopic spin com-
ponent (t = n, p), and a†νt and aνt respectively represent the
creation and annihilation operators of the particle in the state
|νt〉, of energy ενt, |ν̃t〉 is the time reverse of |νt〉 and Gtt′

characterizes the pairing-strength. The neutrons and protons
are supposed to occupy the same energy levels. In the BCS
approach, one introduces two Lagrange parameters λt (t =
n, p) that allow one to define the auxiliary Hamiltonian

H′ = H −
∑

t

λtNt (2)

with Nt =
∑
ν>0

(
a†νtaνt + a†ν̃taν̃t

)
t = n, p.

H is then approximately diagonalized using the
Bogoliubov-Valatin transformation [19]

α†ντ =
∑

t

(
uντta

†
νt + vντtaν̃t

)
τ = 1, 2 (3)

where α†ντ is the quasi-particle creation operator and τ refers
to the quasi-particle type.
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Using the transformation given by equation (3), H be-
comes

H = E0 + H11 + Hres (4)

where E0 is the ground state energy given by

E0 = 2
∑
ν>0

t

ενt


∑
τ

v2
ντt



−1
2

∑
tt′
ν>0

Gtt′



∑
τ

vντtvντt′


2

+


∑
τ

v2
ντt



∑
τ

v2
ντt′




−1
2

∑
tt′

Gtt′
∑
ν,µ>0



∑
τ

vντtuντt′



∑
τ

uµτtvµτt′


 . (5)

H11 is the independent quasi-particle Hamiltonian but in a
non-diagonal form

H11 =
∑
ν>0
ττ′

Eνττ′
(
α†νταντ′ + α

†
ν̃ταν̃τ′

)
, (6)

Eνττ′ being the quasi-particle energy given by

Eνττ′ =
∑

t

ενt − 1
2

∑
t′

Gtt′
∑
τ

v2
ντt′

 (uντtuντ′t − vντtvντ′t)

−1
2

∑
tt′

Gtt′



∑
τ

vντtvντt′

 (uντtuντ′t′ − vντtvντ′t′ )


−
∑
tt′
∆tt′ (uντtvντ′t′ + uντ′tvντt′ ) (7)

with
∆tt′ = −Gtt′

∑
ν>0
τ

(uντtvντt′ + uντt′vντt) (8)

and Hres represents the residual term which is neglected in the
independent quasi-particle approximation.

As underlined above, H11 is not diagonal, hence one has
now to perform a new diagonalization that leads to [20]

H11 =
∑
ντ

λντβ
†
ντβντ (9)

with
β†ντ =

∑
k

xντkα
†
νk (10)

where λντ and xν
τk are given by

λν1,2 =
1
2

[
(Eν11 + Eν22) ±

√
(Eν11 − Eν22)2 + 4E2

12

]
(11)

and

xν11 =
Eν12√

E2
ν12 +

(
λν1 − Eν11

) , xν21 =
λν2 − Eν22√

E2
ν12 +

(
λν2 − Eν22

)

xν12 =
λν1 − Eν11√

E2
ν12 +

(
λν1 − Eν11

) , xν22 =
Eν12√

E2
ν12 +

(
λν2 − Eν22

) .
(12)

In fact, this process corresponds to the definition of new quasi-
particles, of energies λντ, created by the β†ντ operators and hence
to a generalized Bogoliubov-Valatin transformation given by

β†ντ =
∑

t

(
Uντta

†
νt + Vντtaν̃t

)
(13)

with

Uντt =
2∑

j=1

xντ juν jt, Vντt =
2∑

j=1

xντ jvν jt (14)

where τ = 1, 2 and t = p, n.

2.2 Moment of inertia

The ground state of an even-even nucleus is given by [20]

|Ψ〉 =
∏
ν>0,τ

|Ψν〉 (15)

where

|Ψν〉 = {Bν1a†ν̃pa†νpa†ν̃na†νn + Bνpa†ν̃pa†νp + Bνna†ν̃na†νn

+ Bν4
(
a†ν̃pa†νn + a†ν̃na†νp

)
+ Bν5}|0〉 (16)

where the Bνi depends upon U and V parameters. The excited
states for a system of which one particle is blocked in the state
|kT 〉 and another in the state

∣∣∣l̃T ′〉 where k � l and T,T ′ = n, p
are given by

∣∣∣kT l̃T ′
〉
= KTT ′

kl a†kT a†
l̃T ′

∏
j>0

j�k�l

∣∣∣Ψ j

〉
(17)

where KTT ′
kl is a normalization constant. In the quasi-particle

representation, they become
∣∣∣kT l̃T ′

〉
= KTT ′

kl

∑
ττ′
γkτTγlτ′T ′β

†
kτβ
†
l̃τ′
|Ψ〉 (18)

with

KTT ′
kl =


∑
ττ′
γ2

kτTγ
2
lτ′T ′


− 1

2

and γντT = Bν5UντT + BνT VντT + Bν4VντT ′.

Their energies reads

ETT ′
kl = E0 +

(
KTT ′

kl

)2


∑
τ

λk
τγ

2
kτT



∑
τ

γ2
lτT ′

 +

∑
τ

λl
τγ

2
lτT ′



∑
τ

γ2
kτT


 . (19)

The moment of inertia of a rotating system calculated
within the Inglis cranking method is given by [21]

�C = 2�2
∑
µ
µ�0

|〈µ |Jx| 0〉|2
Eµ − E0

(20)
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where Eµ is the energy of the excited state |µ〉 and E0 that of
the ground state |0〉 .

In the framework of the present study, the ground state is
the state (15) of energy E0. The excited states that contribute
to the moment of inertia are those of the form (18) of energy
ETT ′
νµ . A straightforward calculation leads to the following

expression of the moment of inertia including the n-p pairing
effect

�np = 2�2
∑
ν,µ

ν�µ,TT ′

∣∣∣∣∣ ∑
tt′ττ′

KTT ′
νµ γντTγµτ′T ′ 〈νt | jx| µt′〉Wνµ

∣∣∣∣∣
2

ETT ′
νµ − E0

(21)

with Wνµ =
(
Uµτ′t′Vντt − UντtVµτ′t′

)
.

Let us notice that equation (21) is more deeply modified
by the inclusion of the n-p pairing effect than that established
by Gerceklioglu et al., in ref. [15,16], within a study based on
a special type of n-p pairing interaction which is assumed to
be a weak residual force. The latter is given by

�n(p) = 2�2
∑

s

|〈s |Jx| s′〉|2
ε̃s + ε̃s′

(ũsṽs′ − ũs′ ṽs)
2 (22)

for the neutron (respectively proton) system, with

ũs =

[
1
2

{
1 +

(Es − λn(p)

ε̃s

}] 1
2

,

ṽs =

[
1
2

{
1 − (Es − λn(p)

ε̃s

}] 1
2

, (23)

Es being the single particle energies and ε̃s is defined by

ε̃s =

√(
Es − λn(p)

)2
+

(
∆n(p) +

q
2
∆p(n)

)2
. (24)

Indeed equation (22) is formally the same as the usual BCS
one [7]. In fact, in this expression, only the gap parameters
are modified by the inclusion of the n-p pairing effect, i.e.,
∆n,(p) = ∆n,(p) +

1
2 q∆p,(n) where q is an adjustable parameter.

3 Numerical results and discussions

We consider nuclei such as N = Z and 16 ≤ Z ≤ 40 (for which
experimental values of the moment of inertia are known). In
these nuclei, the experimental values of the three pairing gap
parameters are known and have the same values [5,22]

∆
exp
pp = ∆

exp
nn = ∆

exp
np .

The pairing-strength constants Gpp, Gnn, and Gnp are then
determined to reproduce the latter, that are deduced from the
odd-even mass differences [23].

The single-particle energies and states used in the present
work are those of the Woods-Saxon mean field. The ground
state deformation parameters have been extracted from
ref. [23].

Fig. 1. Variation of the moment of inertia as a function of the neutron
number N, for nuclei such as N = Z, and of whose experimental
values are known; without (�) and with (•) inclusion of the n-p
pairing effect. (�) represent the experimental values.

We have evaluated the moment of inertia (�/�2)(MeV)−1

of these nuclei in their ground state, with and without inclusion
of the n-p pairing. The corresponding results are reported in
figure 1 as a function of the neutron number N. We have also
reported the experimental values. The latter are deduced from
the 2+ state of the experimental spectrum of ref. [24], except
that of the 72

36Kr and 68
34Se nuclei that come from ref. [25] and

that of the 76
38Sr nucleus that come from ref. [26]. From figure 1

one can notice that:

– The contribution of the n-p pairing, when compared to that
of the pairing between like-particles is important. Indeed,

the mean relative discrepancy defined as |�np−�BCS |
�np

is 30%.
– The inclusion of the n-p pairing considerably improves the

moment of inertia values, when compared to the pairing
between like-particles ones. Indeed, the mean relative

discrepancy, defined as |�th−�exp|
�exp

where �exp is the experi-

mental value and �th the theoretical prediction, is 7% and
37% respectively, when the extreme points are excluded
with and without inclusion of the n-p pairing. It is thus
necessary to take into account the n-p pairing effect for the
study of the moment of inertia for this kind of nuclei.

4 Conclusion

In the present work, we have studied the isovector n-p pairing
effect on the nuclear moment of inertia.

It has been noticed that the usual Bogoliubov-Valatin
transformation does not lead to an independent quasi-particle
Hamiltonian. A generalized Bogoliubov-Valatin transforma-
tion has thus been defined. The latter leads to a renormaliza-
tion of the quasi-particle energies. The ground state and the
excited ones, as well as the corresponding energies have been
established.

Afterwards, an analytical expression of the moment of
inertia that explicitly depends upon the n-p pairing has been
established within the Inglis cranking model.

The model has been applied for nuclei such as N = Z and
whose experimental values of the moment of inertia are known
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(i.e., such as 16 ≤ Z ≤ 40). The inclusion of the n-p pairing
correlations reduces the mean relative discrepancy between
the experimental and theoretical values from 30% to 7%. The
inclusion of the isovector pairing effects is thus necessary for
the evaluation of the moment of inertia of such nuclei.

References

1. E. Perlinska, S.G. Rohozinski, J. Dobaczewski, W. Nazarewicz,
Phys. Rev. C 69, 014316 (2004).

2. K. Kanego, M. Hasegawa, Phys. Rev. C 72, 031302 (2005).
3. A.V. Afanasjev, S. Frauendorf, Phys. Rev. C 71, 064318 (2005).
4. K. Sieja, A. Baran, Acta. Phys. Pol. B 37, 107 (2006).
5. K. Kanego, M. Hasegawa, Phys. Rev. C 69, 061302R (2004).
6. A.L. Goodman, Phys. Rev. C 63, 044325 (2001).
7. P. Ring, P. Schuk, The Nuclear Many-Body Problem (Springer,

Berlin, 2000).
8. H. Schaaser, D.M. Brink, Nucl. Phys. A 452, 1 (1986).
9. A. Bohr, B.R. Mottelson, D. Pines, Phys. Rev. 110, 936 (1958).

10. A. Mishra, A.N. Mantri, Z. Phys. A 328 , 171 (1987).
11. N.H. Allal, M. Fellah, Phys. Rev. C 43, 2648 (1991).

12. M. Hasegawa, S. Tazaki, Phys. Rev. C 47, 188 (1993).
13. J.Y. Zeng, T. H. Jin, Z. J. Zhao, Phys. Rev. C 50, 1388 (1994).
14. A.V. Afanasjev, J. Konig, P. Ring, L.M. Robledo, J.L. Egido,

Phys. Rev. C 62, 054306 (2000).
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