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Macroscopic-microscopic approach to the nuclear fission process
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Abstract. A model based on the macroscopic-microscopic approach for calculating the fission-fragment properties
is presented. Using this model, a large set of experimental data measured in low- and high-energy fission can be
reproduced using one and same set of model parameters.

1 Introduction

Corresponding to a large-scale collective motion where both
static and dynamic properties of nuclear matter play a crucial
role, nuclear fission represents an excellent tool for studying
different characteristics of nuclear matter, e.g., nuclear-
structure effects at large deformations [1–3], dissipative
phenomena like diffusion and friction in nuclei [4,5] or
multiphonon giant resonances [6]. Knowledge on nuclear
fission is also essential for large range of applications such as
the r-process nucleosynthesis [7], production of neutron-rich
radioactive beams and super-heavy elements, design of
neutron spallation sources and accelerator-driven systems [8],
new generation of nuclear power plants [9], or nuclear safety
and security [10,11].

One of the important aspects of the nuclear fission process
needed to answer the above questions is the fragment forma-
tion in fission, i.e., how the mass, nuclear charge and excitation
energy are attributed to the nascent fragments. This issue is
especially challenging at low excitation energies where shell
effects and pairing correlations have considerable influence on
the mass- and element-distributions of fission fragments.

Most model descriptions of the fission process follow
one of the following approaches: either the evolution of the
fissioning system is described with a purely theoretical model,
see, e.g., [12–14] or the measured observables – mass and
nuclear charge distributions and kinetic energies – are fitted
by suitable functions with empirically determined parame-
ters [15,16]. The first approach is very challenging: due to
the complexity of the problem, any theoretical model has to
introduce a certain level of simplifications. In addition, one
has to face the problem that the theoretical models are able
to predict the relevant properties of a nuclear system only
with a limited accuracy. This is obvious for the potential-
energy surface in deformation space. Even in the nuclear
ground-state configuration, where the single-particle structure
is generally very well studied, the measured binding energies
can only be reproduced with a standard deviation in the
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order of half an MeV. Such deviations are crucial for fission,
e.g., a shift of 500 keV in the ground-state binding energy
modifies the spontaneous-fission half life by about 2 orders
of magnitude [17]. Similar or even larger uncertainties are
expected in the competition between different fission paths
in low-energy fission. Thus, these models are very important
for improving our understanding of the fission process, but
their ability for quantitative predictions seems to be still
rather limited. Moreover, in some cases they are very time
consuming which limits their use for applications.

Following the second approach, one is able to reproduce
existing data very well. However, the predictive power of phe-
nomenological models for extrapolations far from presently
explored regions is rather low due to the lack of the essen-
tial physics. In order to surmount these problems, we have
developed a model, which combines features of these two ap-
proaches. This model is the subject of the present contribution.
A preliminary version of the model was described in refs.
[18,19].

2 Model description

The semi-empirical model for the prediction of the nuclide dis-
tribution in fission is imbedded in the dynamic de-excitation
code ABLA07 [20,21], which considers the competition
between emission of gammas, neutrons, light charged particles
(Z ≤ 2) and intermediate-mass fragments on one side and
fission on the other side. For excitation energies above the
corresponding threshold also break-up and the simultaneous
emission of several fragments is considered [22]. Fission is
treated as a dynamical process, taking into account the role
of dissipation in establishing quasi-equilibrium in the quasi-
bound region by the implementation of a time-dependent
fission-decay width [23] with a proper description of the initial
conditions included [24]. When the system passes the fission
barrier and proceeds to fission, it is characterised by mass
and atomic number, excitation energy and angular momentum.
In the model, probabilities to evaporate neutrons and light
charged particles on the descent from saddle to scission are
calculated, and the probability that the system ends up in
one of the many possible configurations characterized by two
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fission fragments with atomic numbers Z1,2, mass numbers
A1,2, kinetic energies Ekin

1,2, excitation energy Eexc
1,2 is predicted.

After two fission fragments are formed, their deexcitation is
followed until their excitation energies fall below the lowest
particle-emission threshold.

2.1 Basic assumptions

Since the available phase space is a very important driving
force of any process in nature, we consider the statistical
model as the basis of our model. In other words, the proba-
bility that a system is found in a certain configuration is deter-
mined by the available phase space above the corresponding
point on the potential-energy surface. In order to avoid the
above-mentioned uncertainties in theoretical calculations of
the potential-energy surface in deformation space, we have
decided to parameterize the nuclear potential as a function of
the mass-asymmetry degree of freedom. This parameterization
is based on the macroscopic-microscopic approach [12,25–
27], and we assume that the fission-fragment mass distri-
butions can be explained by macroscopic and microscopic
properties of the potential-energy landscape. The macroscopic
properties of the potential-energy landscape of the fissioning
system are attributed to the strongly deformed fissioning
system, which are deduced from mass distributions at high
excitation energy [28] and Langevin calculations [29]. The
microscopic properties of the potential-energy landscape of
the fissioning system are given by the qualitative features
of the shell structure in the nascent fragments. Their formu-
lation is guided by shell-model calculations [25–27]. This
way, the macroscopic and the microscopic properties are
strongly separated, and the number of free parameters is
independent from the number of systems considered. On the
other hand, the fission process is characterized also by the
friction force, which slows down the directed motion towards
scission. Therefore, apart form the statistical arguments one
must carefully consider also dynamical aspects of the motion
from saddle to scission. In several fission models based on the
statistical model, e.g., [14,30,31], it was avoided to consider
dynamical effects by applying the statistical model either at the
saddle or at the scission configuration. This is a rather severe
simplification, since, depending on the relaxation times of the
different collective degrees of freedom, some influence of the
motion from saddle to scission can be present. Therefore, we
will discuss this point with some care.

2.1.1 High-energy fission

First we start considering fission at high excitation energies,
where shell effects and pairing correlations are negligible.
Measured mass distributions of heavy fissioning nuclei above
the Businaro-Gallone point (i.e., Z2/A > 22) from high excita-
tion energies can well be described by a Gaussian distribution.
This finding is related to the available number of states above
the potential energy as a function of mass asymmetry [32].
The second derivative cA = d2U /(dA1)2 of the potential as a
function of the mass of one of the nascent fragments is related

to the standard deviation σA of the mass distribution by the
following relation:

σ2
A =

T
2 · cA

. (1)

Where T is the nuclear temperature, which is related to the
excitation energy of the fissioning system E = a · T 2. The
coefficient a is the level-density parameter. This relation is
a very important ingredient of the macroscopic part of our
model. Firstly, there exists a large body of experimental
data on σA values, which provides the empirical data basis
for a realistic prediction of fission mass distributions when
structural effects are negligible. Secondly, the empirical result
that the variance σ2

A is proportional to the nuclear temperature
supports the validity of the statistical model. However, it is
difficult to extract from these data, at which moment on the
descent from saddle to scission the decision on the width of
the mass distribution is taken. We can consider two possible
extremes: in one case, the phase space near the saddle point
determines the mass asymmetry of the system, which is more
or less frozen on a fast descent to scission. In the other case,
the mass asymmetry degree of freedom adjusts very fast to
the potential and is, therefore, finally determined close to
scission. Since a variation of the mass asymmetry is connected
with a substantial transport of nucleons and, consequently, the
inertia of this collective degree of freedom should be large,
we tend to support the first possibility. Following this idea,
we take the systematics established in ref. [32] using the
temperature at saddle in equation (1) for deducing the second
derivative cA of the potential from the experimental data.
Thus, we have the first quantitative relation, which we use in
our model to calculate the width of the mass distribution in
case of sufficiently high excitation energies. One example of
mass distribution in the spallation of 238U by 1 GeV proton is
shown in figure 1.

On the other hand, the N/Z collective degree of freedom
can be considered as a fast degree of freedom, as it is
enough to exchange very few neutrons or protons between
the two nascent fragments in order to explore the full N/Z
range observed in the final fragments. Therefore, we assume
that the N/Z degree of freedom is determined, opposite to
mass asymmetry, near the scission point, and we calculate its
value taking into account the number of evaporated particles
between the saddle and the scission point as well as the
charge-polarisation effect governed by the liquid-drop contri-
bution to the energy at the scission point [34].

2.1.2 Low-energy fission

Considering the fission process at lower excitation energies,
our approach has to be substantially extended in order to
include the appearance of fission channels. Early ideas for this
concept are formulated in ref. [35].

Following the hypothesis that the mass-asymmetry degree
of freedom is essentially frozen on the way from saddle to scis-
sion, the probabilities for the population of the different fission
channels should be decided near the outer saddle. Therefore,
we assume that there is a direct correspondence between the
shape of the potential near the outer saddle as a function of the
mass asymmetry and the population of the fission channels.
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Fig. 1. Calculated mass distribution (full line) for the reaction 1H
(1 GeV)+238U compared to data measured at GSI [20,33] (symbols).

The appearance of each fission channel is linked to a specific
minimum in the mass-asymmetry dependent potential close
to the outer saddle. At this stage, as already explained above,
we empirically determine the depths and the widths of the
potential minima of the different fission channels at the outer
saddle by the weights and the widths of the corresponding
components in the empirical nuclide distributions. For this
purpose, we need to calculate the number of states available in
the different potential minima. This time, the Fermi-gas level
density is not realistic: we have to consider the level density in
a configuration with substantial shell effects. For this purpose,
we use the analytical relation proposed by Ignatyuk et al. [36].

To determine the potential minima, we need the knowledge
on the macroscopic and microscopic contributions to the
potential. According to the previous discussion, we represent
the macroscopic part by the parabolic potential deduced by
Itkis et al. [35] from the widths of the mass distributions at
high excitation energies.

In order to determine the microscopic contribution we
consider the results of two-centre shell-model calculations
[25,37]. They reveal that the shell effects at the outer barrier
are qualitatively similar to the shells in the separate fragments.
This would indicate that the structure of the wave functions
is quite similar all the way from the outer saddle to scission.
A similar conclusion was also obtained in ref. [26]. This
is not any more valid for more compact shapes, since the
energetically favoured shape at the inner saddle is triaxial
and mass-symmetric. Based on the investigations of Wilkins
et al. [31] on the scission-point configuration, we assume
that the most important shells behind the Standard 1 fission
channel are N = 82 and Z = 50, while the Standard 2
fission channel is related to the N ≈ 90 strongly deformed
shell. To quantitatively determine the shell effects in mass-
asymmetry at the outer barrier, we consider the measured mass
distribution of the fission fragments from 238U(n,f) [38,39]. As
we assume that the shell N ≈ 90 is solely responsible for the
appearance of the Standard 2 fission channel, its properties can
be directly extracted form the observed Standard 2 channel.
On the other hand, the properties of N = 82 and Z = 50 cannot
be determined only from the data on the Standard 1 fission
channel. Here, we make an assumption that the strength of the
Standard 1 channel is given by the interplay of the N = 82,
Z = 50 shells and the liquid-drop potential as a function of

Fig. 2. Calculated mass distributions (red line) for neutron-induced
fission of 238U in comparison with experimental data (black sym-
bols) [38,39] for different values of the excitation energy above
the fission saddle (0.2, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0 and 6.0 MeV
going from the upper left corner) of the composite system 239U. The
calculated individual contributions of the different fission channels
are shown in addition: Standard 1 (green), standard 2 (blue), and
superlong (black).

the N/Z degree of freedom at the outer saddle. We introduce
then one parameter as a common scaling factor for the total
strength of the two shell effects relative to the empirical shell
corrections in ground-state masses around 132Sn. In this way,
we obtain simultaneously both the strength of the Standard 1
fission channel and the charge polarization at saddle. A similar
procedure determines the charge polarization of this channel at
scission.

As demonstrated in figure 2, taking all these ingredients
one obtains a rather consistent description of the measured
fission-fragment mass distribution from 238U(n,f), which re-
produces the decrease of the relative population of the asym-
metric fission channels with increasing excitation energy just
by introducing the above-mentioned three shells correspond-
ing to the Standard 1 and Standard 2 fission channels, and by
considering the washing out of the shell effects with excitation
energy [36]. From our adjusted parameters it appears that the
spherical N = 82 and Z = 50 shells are considerably weaker
than the shell effects we know from the ground-state masses
around 132Sn. It can be speculated that the additional matter in
the neck disturbs the symmetry of the nascent heavy fragment
and reduces the shell gaps compared to the ideal spherical
configuration we meet in 132Sn. The dominating appearance of
the Standard 2 fission channel in 238U(n,f), see figure 2, seems
to indicate that the deformed N ≈ 90 shell, which according to
the results of the shell-model calculations [27,31] appears less
strong in the separate fragments, is less affected by the neck.

In order to calculate the N/Z of the fragments at the
scission point, we proceed in a similar way as in the case
of high-energy fission. For the Standard 1 fission chan-
nel we consider an additional charge-polarization effect as
explained above. After having adjusted the strengths and the
widths of the three shells to the mass distributions of the
system 238U(n,f), we are interested to check the predictive
power of the model by applying it to other systems. We have
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Fig. 3. Comparison between measured [2] (black dots) and calculated
(red line) fission-fragment nuclear-charge distributions in the range
Z = 24 to Z = 65 from electromagnetic-induced fission of secondary
beams ranging from 220Ac to 234U shown on a chart of the nuclides.

chosen a set of data from ref. [2] on nuclear-charge distrib-
ution measured in electromagnetic-induced fission of several
secondary beams ranging from 220Ac to 234U, were we can
observe a transition from a single-humped over a triple-
humped to a double-humped nuclear-charge distribution. The
good agreement with experimental data seen in figure 3 proves
that a common description of 239U and a series of secondary
beams from 220Ac to 234U is possible by using the same set of
parameters.

In fact, our model is able to reproduce the mass and
element distributions over a large range of fissioning systems
with only three shells present in the heavy fragment: N = 82
and Z = 50 for the Standard 1 fission channel, and N ≈ 90 for
the Standard 2 fission channel. Of course, it is possible that the
features of these two fission channels are influenced by addi-
tional shells present in, e.g., the light fragment which we have
not taken into account. The good agreement with a large set
of experimental data seen in figures 2 and 3 supports the idea
that the three above-mentioned shells are decisive in forming
Standard 1 and Standard 2 fission channels. Moreover, these
results would also suggest that the shell effects at the outer
saddle have strong similarities with the shell effects in the
separate fragments, thus representing empirical confirmation
of previously performed theoretical works [25,26,37].

3 Conclusions

We have formulated the most salient feature of our model as
a rather peculiar application of the macroscopic-microscopic
approach to nuclear properties. In our consideration of the
properties of the fissioning system at the saddle configura-
tion, we attribute the macroscopic properties to the strongly
deformed fissioning system, while the microscopic properties
are attributed to the qualitative features of the shell structure
in the nascent fragments. This way, the macroscopic and the
microscopic properties are strongly separated, and the number
of free parameters is independent from the number of sys-
tems considered. This makes extrapolations in experimentally

unexplored regions more reliable. With one and the same set of
the model parameters we are able to reproduce a large variety
of experimental data on mass and nuclear-charge distributions
in low- and high-energy fission. Considering this success, we
conclude that the present model has a remarkable predictive
power, once the parameters have carefully been deduced from
experimental fission-fragment distributions.
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