Open Access
Issue
ND 2007
2007
Article Number 052
Number of page(s) 4
Section Nuclear models
DOI https://doi.org/10.1051/ndata:07310
Published online 17 June 2008
International Conference on Nuclear Data for Science and Technology 2007
DOI: 10.1051/ndata:07310

Direct and semidirect radiative capture of nucleons with Hartree-Fock-BCS bound states

L. Bonneau1, T. Kawano1, T. Watanabe1, 2 and S. Chiba3

1  Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
2  Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
3  Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

bonneau@lanl.gov

Published online: 21 May 2008

Abstract
Nucleon radiative capture is one of the most important process for nucleo-synthesis calculations in astrophysics. The nucleon capture can occur in two different mechanisms: the compound reaction and the direct-semidirect (DSD) process. The compound capture cross sections become very small when many neutron channels open because the neutron width becomes much larger than the γ width. For incident nucleon energies above about 5 MeV, the capture process can be described by the DSD theory only. In the DSD process, the incident particle is captured directly by an unoccupied bound state (direct) or it excites a collective state and is then scattered into a bound state (semidirect). In this picture, the calculation is sensitive to the radial wave functions of the bound state, which are often calculated with a single-particle model using a Wood-Saxon potential. For astrophysical calculations, since experimental information on nuclear structure is uncertain or inaccessible, we apply a Hartree-Fock-BCS (HFBCS) structure model to generate the radial wave functions. The DSD cross sections are obtained by calculating a transition amplitude to the HFBCS states and using the calculated spectroscopic factors. We calculate the neutron capture cross sections for even-even spherical and deformed targets, namely 208Pb, 122,132Sn and 238U. The agreement with the experimental cross sections, only available for 208Pb and 238U, is very good.



© CEA 2008

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.